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The triumph of the TCP/IP protocol suite in today’s market is nearly complete.  A monoculture 
of networking has emerged, based on Internet protocols originally developed in the 1970s and 
popularized in the 1980s.  With this level of acceptance and a near-universal use of IP for 
purposes well beyond the original designers’ intent, one can imagine that TCP/IP really 
represents the final stage in networking, from which all future solutions must slowly evolve.  

This belief, however popular, is not necessarily correct.  TCP/IP was a very important stage of 
network evolution.  It was designed for the ARPANET, which the Department of Defense built 
as a resource-sharing network to reduce the cost of its research.  It showed promise and 
conclusively demonstrated alternative forms of networking that had not previously been shown 
at such a scale. But it was not set up to primarily do research on network technology per se.  
There was no such network; research on networking was incidental to its mission. 

It was, if anything, too successful.  Because the ARPANET and TCP/IP worked reasonably well, 
was government-funded, and had no strong competition, it went into production too early.  Its 
technology was adopted by the later Internet, as well as by many private networks, and it has 
been simply accepted as a given. 

The Internet itself has been a huge popular success, in large part because of its low-priced 
business model.  It hasn’t been as successful for its providers; the ISP industry has never been 
very profitable, and the early growth of the Internet was largely subsidized by the huge infusion 
of overvalued equity during the 1997-2000 stock boom.  IP has absorbed the glow from the 
Internet’s halo.  It is hard to distinguish between the Internet and its protocols.  But they are not 
the same thing.  For the Internet to prosper in the long term, it needs to move beyond TCP/IP.  
The experiment was a success.  Now is the time to analyze its lessons and start moving ahead. 

Unfortunately, the Internet Engineering Task Force has not been learning these lessons.  It has 
been acting as a promotional body for TCP/IP itself.  It confused commercial success with 
technical excellence.  It has tragically decided that the evolution of IP is to IP Version 6.  This 
decision, made in the early 1990s before the Internet was even in widespread commercial use, 
has distracted the networking community.  A different direction is needed. 

TCP/IP was designed for a limited set of tasks 
When the ARPANET began in 1969, it was designed to demonstrate the then-radical notion of 
packet switching.  The mere notion that a network could handle small blocks of data, rather than 
create constant flows like a phone call, needed to be demonstrated.  The original ARPANET 
protocol was called NCP.  It was, in today’s terms, connection-oriented:  Before data could be 
passed between two points, a connection had to be set up.  What differed from the connection-
oriented telephone network was that the actual network capacity was only consumed on demand, 
not merely by having a connection present.  But NCP was also a very rigid protocol, designed to 
ensure reliability of transmission on a hop by hop basis.  This may have been a good idea given 
the networks of its day. The ARPANET backbone ran at 50 kilobits per second..  This was very 
fast at the time! 
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The NCP ARPANET is not today’s Internet.  It was closer to what the public packet-switched 
networks that were developed in the 1970s called X.25.  These networks were optimized for 
terminal-to-host applications.  It was a dead-end technology that dominated European markets in 
the 1980s. 

But it was a French researcher, Louis Pouzin, who saw the early ARPANET and had a different 
idea about how to perform packet switching.  He postulated that the switches in the middle of the 
network didn’t have to keep track of connections; they just had to pass packets as they arrived. 
Error correction and flow control could be handled at the edges of the network.  He designed and 
built the first connectionless network, CYCLADES, in 1972.  He also noted in a 1974 article that 
it was possible for packets to be passed between separate networks, each with its own 
administration and policies.  This idea was picked up later that year by ARPANET researchers, 
along with connectionless networking.  We now know it as the Internet, the network of networks. 

ARPANET researchers created a new set of protocols, with TCP for end-to-end error and flow 
control and IP for the connectionless middle.  They did not receive universal acceptance even 
then.  When submitted to the International Federation for Information Processing (IFIP) for 
international standardization, alternatives closer to Pouzin’s work were found more suitable. The 
latter were submitted to ISO for its pending OSI program.  But the Department of Defense 
continued with TCP/IP. 

It was phased in and, by 1983’s “flag day”, completely replaced NCP.  And around that time, 
Berkeley released a free, open source implementation of TCP/IP.  It included the key application 
protocols of its day, too: FTP for file transfer, SMTP for email, and TELNET, which was largely 
used for remote terminal login.  While designed for Berkeley Unix (BSD), it was adaptable to 
other systems too, and helped make TCP/IP popular.  It worked, and while the original code was 
rather sloppy, the price was right. 

TCP/IP’s strength, as with its contemporaneous alternatives, was in dealing with bursty data 
traffic.  It scaled reasonably well, thanks to Moore’s Law, and with some rather critical 
adaptations made in the mid-1980s, adapted to high-speed local area networks.  It easily handled 
new applications, including file and print services and the World Wide Web. 

But it was not designed to replace every other network.   Packet switching was designed to 
complement, not replace, the telephone network.  IP was not optimized to support streaming 
media, such as voice, audio broadcasting, and video; it was designed to not be the telephone 
network.  Packet voice was tested over the ARPANET in the 1970s, so the idea is not new.  
However, streaming over IP’s “best effort” model of capacity allocation doesn’t mix well with 
data traffic.  This was recognized by the late 1980s and streaming packet protocols, with defined 
flows, were designed; the most successful was ST-II (see RFC 1190).  But these didn’t catch on.  
Instead, the rapid growth of capacity in the Internet backbone allowed streams to just hitch a 
ride, working just well enough to catch on. It was a case where good enough was the enemy of 
the best.  The IP juggernaut was unstoppable. 

IP has a number of weaknesses today 
TCP/IP was a useful laboratory experiment, and it helped the Internet to get started.  But that 
doesn’t make it perfect.  The TCP/IP ARPANET itself had weaknesses that are surprising in a 
network financed by national security dollars.  It lacked any kind of security mechanisms, 
depending entirely on the security of the computers connected to it. (We see today how well that 
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worked out!)  And it lacked support for redundant connections (multihoming), even though the 
need had been identified in the early 1970s.  This wasn’t rocket science; by the 1980s, TCP/IP 
was the most open protocol stack but not the most powerful.  

And the Internet of today isn’t the ARPANET of the 1970s or for that matter the Internet of the 
early 1990s.  It scaled up pretty well, but not infinitely.  So it’s time to size up the lessons 
learned and start on the next generation of networking.  TCP/IP was a research project; let’s 
exploit the results of that research.  There are many issues that IP doesn’t handle well and which 
could be addressed if a new protocol were developed from a clean slate, rather than as an 
extension of IP. 

IP doesn’t handle addressing or multi-homing well at all 

The original ARPANET was designed for the relatively small production loads of its day. It was 
secondarily a tool for developing packet switching technology.  The ARPANET was also 
designed around attaching each computer (a host) to only one IMP (Inter-Machine Processor, as 
its early packet switches were called).  The NCP address was the IMP’s ID number plus the port 
number going to the host – just like a primitive phone switch, with its exchange code and line 
number, and the early datacomm networks, which focused on terminal to host connectivity.  This 
turned out to be a problem as soon as an ARPANET host asked for a redundant connection, and 
as a result ended up with two addresses. When IP came along a few years later, it inexplicably 
kept this convention, addressing the interface, not the host.  But what happens when a host needs 
a reliable connection, and thus needs redundancy?  Because IP addresses are assigned to each 
interface, a multihomed host looks like two different hosts.  This makes multihoming almost 
useless, as traffic bound for the failed interface doesn’t know about the alternate path.  It’s 
serious mistake, and the solution is not hard.  This is no different from having logical addresses 
and physical addresses in computer operating systems.  Other early networks such as 
CYCLADES (in 1972), DECnet (around 1979), XNS and OSI got it right.  In fact, essentially all 
of the early packet-switched networks except the ARPANET and then the Internet got it right.  If 
the multihomed host itself had one address, routing algorithms could easily calculate alternative 
paths to it.  Oddly, the convention was maintained by the IETF in IP Version 6.  

The problem is magnified when dealing with multihomed networks.  The mythology about IP is 
that it was designed by ARPA to survive nuclear war.  The reality is that it has trouble figuring 
out where to send packets at any given time.  This comes about in part because its addressing 
scheme is next to nonexistent!  Multihoming is not its only problem.   

The first part of an IP address is the network part, which indicates the network that the interface 
is attached to.  These numbers are really just variable-length numeric names for networks.  
Because of the way they have been historically assigned, two adjacent network numbers can be 
in different parts of the world.  So every backbone router needs to keep track of every network.  
Hundreds of thousands of them.  All the time.  

In other words, it’s not an address at all.  It’s like giving every house in a large city its own 
number, in order of construction.  Not 100 Main St. or 301 17th St., but 3126, while 3127 is 
halfway across town and your next-door neighbor is 188.  The actual location, which an address 
should convey, is computed in each router, in a very data-intensive process. The rest of the 
address identifies the interface within that network.  It identifies the subnet, which is used for 
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routing to a group of nodes within the network (akin to a street), and finally the specific interface 
(akin to a house).   

Since 1992, an interim fix has been to assign most companies provider-dependent addresses:  If a 
company attaches its private network to one ISP, then it gets its IP addresses from its ISP. This 
connection is invisible to the outside world since only the ISP’s network identifier is flooded.  
But if it wants to connect to two ISPs, it needs its own provider-independent (PI) address block.  
It’s like being its own city in the postal address system.  It now becomes part of the backbone; its 
block is one of hundreds of thousands that need tracking. 

Backbone routers then exchange information amongst each other about all of the routes and 
subnet blocks that they serve.  This doesn’t scale well at all.  The more networks on the Internet, 
and the more multihomed PI address blocks, the more routes there are, and the number of 
possible paths thus rises faster than linearly.  And as the Internet grows more important, more 
and more companies will want multihoming and PI address blocks.  This has been good for the 
router makers who need to sell newer, more powerful routers just so that network operators can 
keep up.  It’s bad for everyone else.  But even the router vendors are having trouble keeping up.  
Oops. 

It has been suggested that as many as ten million businesses may eventually want multihoming.  
The core IP network simply cannot sustain that many routes.  Now let’s think about another up-
and-coming application, the electric industry’s “SmartGrid”.  This potentially involves having 
every electric meter, at every home and business, be on-net, multihomed.  Each major utility thus 
has more than ten million of its own potential multihoming devices. Worldwide, this can add up 
into the billions. 

The IETF’s proposed solution to the multihoming problem is called LISP, for Locator/Identifier 
Separation Protocol.  This is already running into scaling problems, and even when it works, it 
has a failover time on the order of thirty seconds.  This is bad enough for web browsing but if it 
were used for the electrical grid, it’s enough time to lose the east coast. 

How does IP Version 6 handle this?  By having a larger address space, it permits more address 
blocks to exist.  That’s all.  It doesn’t change the architecture; it just speeds up the fuel pump 
feeding the fire. Perhaps it’s moving in the wrong direction.  Maybe that’s why the authorities 
that grant blocks of IP addresses are being so parsimonious with IPv6 blocks.  And it’s not as if 
they didn’t know better.  IPv6 was designed after an attempt to correct the problem, sometimes 
referred to as IPv7 (also called TUBA), was designed, deployed, and tentatively agreed upon as 
the successor to IPv4.  IPv6 was designed to maintain the status quo. 

TCP and IP were split the wrong way 

TCP and IP started out as just one experimental protocol, called TCP.  It was split into two in 
1978, with IP separated, in recognition of the fact that routers only need to look at the IP header, 
not the TCP header.  The first widely implemented form of this was TCP version 4, which is why 
the split-off IP uses that version number.  So they looked like separate layers to the ARPANET 
community at the time.  The concept of layers as black boxes came from Dijkstra’s work on 
operating systems, which was well known by 1970. 
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IP’s key function is relaying packets to the next hop.  TCP has two key functions.  One, which it 
shares with UDP, is identifying the connection: The port ID identifies the instance of 
communication between two hosts.  TCP also provides error and flow control.  The problem is 
that mechanism and policy are not separate.  TCP implements a single policy with its 
mechanism; UDP implements a second policy with its mechanism.   

TCP provides the feedback from receiver to the sender that allows the sender to retransmit lost 
packets, effecting end-to-end reliability.  But TCP’s header sends these feedback messages in the 
same packets that carry data forward. Processing would be considerably simplified if control and 
feedback headers were kept on separate packets from those that carry payload.  On a high-speed 
network, the payload needs to be processed rapidly.  Control can run at a more leisurely pace, 
tied to the round-trip time of the connection.  This “piggybacking” was an optimization for the 
very short packets that dominated the ARPAnet in the 1970s, when the killer application was 
logging in to remote computers from a dumb terminal that needed character-at-a-time echo, and 
thus had largely symmetric flows.  But it makes processing more complex today, with few if any 
benefits.  Elements that need to be associated with the data (relaying forward) have few 
interactions with those that don’t, such as flow control messages and the acknowledgments that, 
when not received in a timely manner, prompt retransmission. 

Another problem is that it numbers and acknowledges bytes, not packets, the way almost all 
other protocols do. This is an artifact of the early TCP, before IP was split off; it facilitated 
fragmentation within the network. But it makes it harder for TCP to scale to higher speeds, 
especially over imperfect or long-delay links.  Associated with this is the general inability of 
TCP/IP to fragment packets reliably, with the layers split as they now are.  Different physical 
media and data links have different maximum packet sizes.  TCP at best copes with this by using 
a discovery technique that sees what packets do and don’t get through.  But this doesn’t get along 
too well with IP networks that are allowed to change the path.   

IP lacks an addressing architecture 

IP itself, and the TCP/IP stack in general, lack an actual addressing architecture.  Most telling is 
that the IP address is not even an internet address at all!  Because it identifies a point of 
attachment to a host, it is basically a data link address.  The host itself is not addressed.  That 
would be the proper role of an “Internetwork” layer.  This was identified in the mid-1980s as part 
of the research for the OSI program.  The network layer (“layer 3”) was identified as having 
three separate “roles”.  The bottom one (subnetwork-dependent) dealt with the underlying 
network (such as a  LAN or a public packet-switched network), the top one (subnetwork-
independent, or “internetwork”) dealt with the overall network, and a convergence function 
mapped the two together. 

Prior to 1983, the ARPANET ran NCP, and when TCP/IP was first introduced, it ran atop NCP.  
In that era, IP really was an Internetwork layer, and NCP was the subnetwork.  But when NCP 
was shut down, IP took over the network role.  It was no longer a true Internetwork Protocol; it 
became just a network protocol.  No wonder it has problems with multihoming, mobility, and 
other address-related matters. 
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NAT is your friend 

This brings us to another major controversy in the TCP/IP world, Network Address Translation 
(NAT).  This serves two major functions.  One is to conserve IP addresses, which is of course 
important in a world running out of IPv4 addresses, This also applies to home networks that have 
multiple computers sharing a single ISP connection that provides one IP address at a time.  The 
other function is security:  Devices with private (NAT) addresses can’t be directly addressed 
from the public Internet.  The NAT gateway acts as a firewall and thus protects against some 
kinds of attack.  For this reason, many corporate networks use NAT even though they have 
plenty of their own PI address space. Only secure public-facing servers go outside of the 
firewall. 

NAT is often seen as a layer violation because the NAT device has to modify the TCP and IP 
layers together, changing port numbers (in TCP or UDP) as well as IP addresses.  This is not a 
problem with NAT per se.  IP address + port number is the connection identifier.  So address 
translation  naturally deals with them together.  NATs only break broken architectures.  Consider 
this a lesson learned from the great TCP/IP experiment. 

There is, of course, one clear layer violation that NAT has to deal with, but that’s not NAT’s 
fault either.  Some application protocols put an IP address inside the application layer header. 
These have to be modified by NAT, so a NAT has to understand the syntax of all of these layer-
violating applications that it supports.  The original application that did this was FTP, going back 
to the very early ARPANET days.  FTP did this because – remember, this was a lab hack, not 
meant for production – BBN, who built the original packet switches, had line printers attached to 
user ports on its Terminal Interface Processor, an early terminal server.  The TIP didn’t have 
enough memory for a name table, so the protocol port number in the TCP header literally 
identified to the physical port on the TIP.  (That’s why they’re called port numbers.)  This 
problem was fixed years before IBM built its first “PC”.  But other protocol designers assumed 
that FTP’s designers must have known something they didn’t, so they blindly copied it. This is 
rather like passing physical memory addresses in a Java program. 

SIP, the popular VoIP control protocol, also allows IP addresses in the header in lieu of names.  
This is done because telephone sets and other devices may not even have name entries in the 
DNS, especially if they’re behind a NAT.  This points to a second problem with TCP/IP. The 
real name of an application is not the text form that humans type; it’s really identified by an IP 
address and its well-known-port number.  When an application uses a host name or other text 
form such as a URI, it is the application that resolves it by querying DNS.  This should instead 
be done by the network layer machinery in the host.  That would close off the excuse for putting 
IP addresses in the application layer, and provide a uniform mechanism for application-entities to 
find each other.  Again, this was not recognized by the ARPANET developers in 1975, when 
there were only a small number of hosts on the net and only a few applications, but it’s a case 
where the TCP/IP architecture has not scaled well.   

In fact, even host names should not be used in the application.  Applications, not hosts should be 
what’s named!  The host simply, er, hosts it!  Many applications nowadays run on more than one 
host; this requires a royal kludge in the TCP/IP architecture. 
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IP is overburdened by local peering 
The original “Internet” concept was one of large-scale networks with limited interconnection 
between each other.  The term dates back all the way to CYCLADES.  It came into widespread 
use when the Department of Defense separated its internal MILNET from the more research-
oriented ARPANET.  The two IP networks remained linked, but under separate administration.  
The pre-public ARPANET and later the Internet grew by adding organizations such as 
universities and corporations, each of which managed their own network and which typically had 
one or two links to the rest of the network outside of the company.  Most users had more of a 
community of interest within their own organizations than with the rest of the world; public 
Internet access was thus a feature of their network, not the goal itself. 

Today’s Internet is used very differently.  It functions, like the telephone network, as a consumer 
and general business service. Corporations often use encrypted links across the public Internet to 
link their own sites, rather than use private links to access the Internet centrally.  

But because of the way IP works, interconnection between networks remains largely centralized 
as it was in the 1980s.  With some narrow exceptions, each link between networks must be 
reported to every router worldwide.  So if Comcast in Massachusetts were to create a direct link 
– that is, peer – with Verizon in Massachusetts, this link and its current status would be reported 
via the backbone’s “flooding” system to routers in New York, Texas, and Uzbekistan.  So 
network designers have to strike a balance between creating too many links, and thus 
overburdening the routers, and having too few links, and thus having to send local traffic on a 
very roundabout route. 

The telephone network doesn’t work like this, of course.  Within the United States, local calls are 
almost always exchanged within each LATA.  The presence of an additional link between two 
carriers is invisible, and these links number at least in the tens of thousands. The primary path 
through an access tandem is reported through a data base distributed to subscribers monthly; 
other paths are private.  And that is mainly of interest to other carriers within the LATA.  So 
local phone calls go through one or two hops from end to end, while long-distance calls usually 
need three or four.  To be sure, the telephone network dates back to the days when “long 
distance” was very expensive.  But most calls are still local, and it’s still pretty efficient for calls 
of all distances.  

Contrast this, using the traceroute program on almost every computer, to the way ISPs 
interconnect.  A packet from RCN in Boston to Verizon or Comcast in Boston goes through New 
York.  Some local packets hairpin through New Jersey or Virginia. A link of less than ten hops is 
a rarity, unless it’s to one’s own ISP or a content distribution network collocated on that network. 
This inefficiency adds to the cost of service and degrades its performance, but it’s inherent in the 
way IP works.  It simply wasn’t designed to replace local public networks.  Keep this issue in 
mind when envisioning a possible transition to an “all-IP” telephone network.  One workaround 
is to have private peering relationships that do not get reported to the backbone.  These handle 
some high-volume routes, but IP’s architectural limitations makes local peering the exception, 
not the rule.  

IP is poorly suited for streaming  
IP was designed to deliver packets on a “best efforts” basis, meaning that it’s okay to throw 
packets away.  That’s not a bad thing.  But it works best when the payload can use 
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retransmission.  Streaming means that there’s no time to retransmit, so the stream must have low 
loss.  The best that IP can do for streaming is to assign priorities, with high priority given to 
streams, such as telephone calls, that don’t tolerate loss.   

Standard TCP data slows down using the slow-start algorithm; streams do not.  So if there are 
too many streams on a link, ordinary data can be crowded out.  We already have a telephone 
network and cable TV; these applications could potentially break the unique capabilities that 
only the Internet can provide. The telephone industry is evolving towards the use of IP, but it is a 
tricky proposition. The telephone streams often have to be separated at a lower layer, put into 
separate flows using MPLS, Carrier Ethernet, or some other technique, even TDM.  These offer 
the lossless assurance of bandwidth that IP, being connectionless, lacks. Attempts to handle 
streaming within IP are preposterously complex and unproven.  (See, for instance, IMS, the IP 
Multimedia Subsystem.  It’s the nuclear fusion of IP:  It’s always a few years from being ready.) 

When these lower layers are doing the heavy lifting, what’s IP’s role?  Mostly it’s just a way to 
multiplex the traffic, and to take up space, while getting the alleged coolness factor. and possible 
regulatory advantage, of IP.  In one prescient Lucent Technologies flyer from the boom years, a 
short-lived VoIP add-on to its 5ESS telephone switch was said to have, among its key benefits, 
“Wall Street image” and “access to capital”.  The truth is that while voice and video can migrate 
to IP, it’s a marriage made in hell, as it is difficult for both to truly get along without a lot of 
waste.  While the FCC has been asking about a perceived migration towards an all-IP telephone 
network, it has clearly not yet distinguished between the Internet as a regulatory and business 
model, whose favorable regulatory treatment has driven the migration, and the IP protocol itself. 

A path forward 

So if IP is so imperfect, can anything be done about it?  Of course… but it’s not going to be 
handled by incremental upgrades or missteps like IPv6.  Instead, what John Day has done in his 
Patterns in Network Architecture: A Return to Fundamentals is start afresh, taking into account 
lessons learned in the 35 years of TCP/IP’s existence, as well as the lessons of OSI’s failure and 
the lessons of other network technologies of the past few decades.  He has made some key 
observations that point to a new direction.  

Day has been on the net since 1970, and participated in early work on TCP, TELNET, and FTP, 
as well as the IFIP working group referenced earlier.  He was, for some years, the rapporteur of 
the OSI Reference Model.  That is, he chaired the committee that was charged with developing 
the famous 7-layer model which had itself been invented in the late 1970s.  Early on, the OSI 
upper layer group recognized that the model itself was fundamentally wrong!  Layers 5, 6 and 7 
were really one layer, and did not work as separate ones.  This was known by 1983 and the 
protocols were refined to allow them to be handled together.  But not all implementers or 
textbook authors understood this, and attempts to build OSI-compliant applications atop separate 
layer 5 and 6 protocol machines met with so much difficulty that the whole OSI program 
collapsed.  And indeed one of TCP/IP’s strengths was that it lacked these superfluous layers. The 
IP community of the day was if anything practical, apparently more so than it is today.  

But fixed protocol stacks themselves turn out to be the problem!  The pattern that Day noted is 
that protocol functions tend to alternate as one goes up the stack.  This alternation reflects a 
repeating unit consistent with interprocess communication.  The error and flow control protocol 
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breaks up into two functions, data transfer, which sends data forward, and data transfer control, 
which provides feedback from the receiver. These functions both happened in both X.25’s layer 
2 and 3 protocols, and it also describes the relationship between IP (data transfer) and TCP (data 
transfer control).  Applications themselves have a common pattern too. 

Lower layers thus tend to do the same things as upper layers, but on a more local scale, with 
more flows aggregated into them.  At the application layer, a single instance frequently 
communicates between two computers.  At the other extreme, a large network backbone link 
may carry thousands of processes, headed between many different computers, part of the way.   

Recursive layers 

This leads to the first principle of our proposed new network architecture:  Layers are recursive.  
The same protocol can be used repeatedly in a protocol stack, encapsulating each layer in another 
instance of itself.  There is thus no need for purpose-built protocols for each layer.  There is also 
not a fixed number of layers in the stack.  The number of layers between the application and the 
physical medium is variable; at any given point, there are simply as many as needed, no more, no 
less.  But any given implementation only needs to deal with itself, the layer above it, and the 
layer below it.  The actual depth of the stack is essentially invisible. 

Layers are not the same thing as protocols; more than one protocol can make up a layer. Because 
the same group of protocols is used repeatedly, the implementation is simpler than the TCP/IP 
stack. There’s no need for separate protocols for “layer 2”, “layer 3”, etc.  Because the layers 
recurse, and can scale to form a large internet, the protocol suite that supports the concept from 
Patterns in Network Architecture (PNA) is called the Recursive Internetwork Architecture 
(RINA).   

The protocols that make up the basic RINA layer include the Data Transfer Protocol (DTP) 
which relays the payload in the forward direction.  Its contents includes addressing information 
and protection information (a checksum and a time-to-live counter which detects routing loops).  
The Data Transfer Control Protocol (DTCP) performs the error and flow control functions, 
sending feedback from destination to source. Note that DTP has the payload, which is visible 
outside of the layer, while DTCP operates entirely within the black box.  A layer also has a 
management protocol. 

Another observation that Day made is that networking is just interprocess communications 
(IPC), a standard function on modern computer operating systems.  IPC within a single computer 
is quite simple; it could just take the form of memory shared between two processes.   IPC 
between computers requires additional mechanisms to deal with issues such as reliability of 
communications and synchronization.  That’s where network protocols come in.  
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Figure 1Functions are executed within a Distributed IPC Facility over different time scales. 

Hence the combination of functions that make up a layer is called a Distributed IPC Facility, or 
DIF.  An instance of DTP and an instance of DTCP fall within a single DIF, a single layer.  DTP 
functions operate over the shortest time frame.  DTCP functions operate over a slightly longer 
time frame; the two share information via the Data Transfer State Vector (DTSV).  The error and 
flow control functions of DTCP might only be performed at the edges, as with TCP over IP, but 
there’s no formal layer boundary between them.   

A DIF also includes a number of management functions, which among other things include 
setting up routing within the DIF. These functions, which are somewhat less time-critical, are 
stored in a Resource Information Base (RIB).  

The DIF is the basic mechanism of RINA.  It is a black box that operates among multiple 
systems; the IPC process thus runs on every system that belongs to the DIF.  A DIF enforces 
strict layer boundaries:  What happens inside the DIF is not visible outside of the DIF. What is 
visible at the top of a DIF is the service requested of the DIF; what is visible at the bottom is the 
service requested by the DIF of the DIF beneath it, if it isn’t the bottom one.   
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Figure 2 Distributed IPC Facilities may be stacked as required. The number of layers in the stack may 
vary from hop to hop 

An application process is at the top of the stack.  The DIF beneath it is aware of it, and identifies 
it by name.  A DIF can span many systems; it may rely on the services of lower-layer DIFs to 
link the members of the DIF.  And these DIFs may in turn rely on DIFs beneath them, 
transparent to the application processes that use them. 

 
Fig. 3.  A router is a DIF which performs relaying between DIFs as its application. 

One of the fundamental DIF services is the encryption of its payload.  It’s impossible for a relay 
to “peek inside the envelope” of an encrypted DIF.  Hence there is no need for a separate RINA 
equivalent of IPsec or SSL, because encryption is available everywhere.  Deep packet inspection 
is thus impossible.  Network content is thus inherently neutral, though not in the “one size fits 
all” sense desired by many IP neutrality advocates.   

The basis of DTCP is the delta-T protocol, invented around 1978 by IBM’s Dick Watson.  He 
proved that the necessary and sufficient conditions for reliable transfer is to bound three timers. 
Delta-T is an example of how this should work.  It does not require a connection setup (such as 
TCP’s SYN handshake) or tear-down (like TCP’s FIN handshake) for integrity purposes.  In fact, 
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TCP uses the same three timers!  So RINA lacks unnecessary overhead.  Watson showed that 
synchronization and port allocation are distinct functions.  In fact, maintaining the distinction 
also improves the security of connection setup. 

RINA also only requires a single Application Protocol, the Common Distributed Application 
Protocol.  Just as there are patterns visible in the other layers, all applications can be shown to 
need only six fundamental operations that can be performed remotely:  Create/delete, read/write, 
and start/stop  What changes from application to application is in the objects being manipulated, 
not the protocol.  So the protocol remains stable, while new applications are accommodated 
easily by changing the object models.  The common application protocol is used within the DIF 
for layer management functions.  These include enrollment (initializing the DIF) and security 
management, port allocation, access control, QoS monitoring, flow management, and routing. 

Designed for multiple functions 
TCP/IP was designed for the data networking functions of the day, and was not intended to 
replace the telephone network or for that matter the cable TV network. VoIP and IPTV are 
essentially done by brute force.  RINA starts by asking the question, can a protocol be effective 
for multiple functions with very different requirements?  The answer, of course, is yes.  It’s not 
hard to effectively serve different applications if that’s the goal from the beginning of the design. 

RINA does this by having many plug-ins that control how the DTP and DTCP work.  One of the 
key differentiators of RINA vs. TCP is its support of Quality of Service (QoS) options.  These 
include parameters such as allowable packet loss rate, error rate, delay, and jitter (delay 
variance),.  A DIF can operate in a “best effort” mode, like IP.  In a recursive stack, only the top 
DIF might need to do the end-to-end error correction.  That’s how TCP/IP works and it’s fine for 
many applications.  

In RINA, policy and mechanism are separated.  The mechanism of a protocol may be tightly 
bound, such as the headers of a data transfer packet, or loosely bound, as in some control and 
acknowledgment messages.  Different applications may need different policies.  Flexibility 
comes from being able to use common mechanisms in conjunction with different policies, rather 
than needing separate protocols.  The syntax of protocols dictates neither policy nor mechanism.  
Protocols can thus be expressed in an abstract syntax, which is then converted to the concrete 
syntax (the bits on the wire).  This is more flexible than the rigid bit-field syntax of the TCP/IP 
protocols, and enables the same basic mechanisms to be used in very different ways.  For 
example, the question of address field size is simply not something to argue over: The length of 
an address is part of the concrete syntax, and it just needs to be appropriate for the given DIF at 
the given time.  It is not a constant.  (Recall that the only actual address of a DIF is a name; the 
“address” field is a short alias that facilitates routing within the DIF.)   

Once policy is separated from mechanism in data transfer protocols, the only major differences 
are syntactic, and these are limited to the lengths of the address (alias), port-id field, and 
sequence number related fields. They have little effect on how the information in the fields is 
used.  The port-id is at most an index into a table; the length of the sequence-number-related 
fields only affects the modulus of the arithmetic. Otherwise, the procedures using them are the 
same. These differences are hardly warrant writing entirely different protocols for each case.  So 
the syntax for all data transfer protocols can be reduced to a small number of cases, with 
common procedures and plug-in policies. 
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Protocol historians studying the X.25 era might remember an earlier construct that foreshadowed 
this.  An HDLC connection could be initiated with the “SABM” command, providing a 3-bit 
sequence number field, or with the “SABME” command, with a whopping huge 7-bit sequence 
number.  (The smaller field saved a whole byte in each packet, making it very popular, and it 
could usually keep up with a teletype terminal.)  Different carriers’ networks had different 
policies about which form to support.   

Various QoS options have existed in other protocols, such as ATM (asynchronous transfer 
mode).  QoS has gotten a bad name in the IP community, but then it’s impossible to deliver 
anything but a best-efforts QoS on pure IP.  This comes about because QoS requires metering of 
the data rate, which is not part of IP.  One alternative in IP is to establish priorities, or “Class of 
Service” options; another is to create connections below the IP layer and map specified IP 
streams onto these connections.  That’s what MPLS does, for instance.   

A DIF can be asked to provide a low-loss connection for a specified level of capacity, such as 
might be required for an audio or video stream.  Or it can be asked for a best-effort (unspecified 
QoS) connection.  RINA simply considers QoS to be a set of parameters plugged in to the DIF, 
and the specific mechanisms that it uses to provide it are an implementation detail, hidden inside 
the black box.  If the DIF determines that it can’t deliver the requested QoS, it rejects the request.   

Integrating connectionless and connection-oriented networking 
One of the reasons that many TCP/IP backers are so passionate about their cause is that they 
fought hard battles over it.  In the early 1980s, the OSI committees faced a serious conflict 
between those who supported connection-oriented networks, and those who supported the 
connectionless approach.  OSI defined a “connection-oriented network service” (CONS) that was 
based closely upon X.25.  It promised “reliable” transport, which meant that the network itself 
was involved in error and flow control, and solicited retransmissions when it detected a dropped 
packet.  It also defined a “connectionless network service” (CLNS), not all that dissimilar from 
IP.  (In fact, it was the OSI Connectionless Network Protocol (CLNP) that was proposed as the 
basis of the next generation of IP, to be called IP Version 7, which was already implemented in 
the major routers of the day. This was in the early 1990s.  This decision faced serious opposition 
from the rank and file of the IETF, who saw OSI as the enemy, a competing standards program, 
and that led to the eventual development of the dramatically-inferior IP Version 6.) 

Connectionless service is fine for many things; the TCP/IP Internet is an existence proof that it 
works, something that the early CONS backers would not have believed possible.  But the OSI 
CONS gave connection-oriented networking a bad name.  It tried to do too much inside the 
network.  It wasn’t until years later than “lightweight” connections took hold.   

As it turns out, the distinction between the two is less than it seems.  The usual argument for 
connectionless networking is simplicity.  By not promising too much, the network is simpler, or 
“stupid”.  A protocol has been considered connection-oriented if it needed to set up a context for 
the flow of data.  IP is considered connectionless because each packet is just routed as it comes 
along.   But wait:  How does a connectionless (IP) router know where to route packets to?  
We’ve already determined that an IP address doesn’t actually tell you where it’s going; it just 
names the destination network and node.  So in fact connectionless routers require more context 
than connection-oriented ones, because they need to maintain, in effect, connections to every 
other node on the Internet!  That’s what routing tables are all about, and why they’re getting 
bigger by the day. 
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In fact, connectionless networks do have an equivalent of connection establishment, but it 
happens well before packets are sent.  Port numbers are allocated (some have been allocated for 
decades) and addresses are assigned to hosts.  This is essentially the enrollment phase of a 
connection.  Enrollment is required in RINA too, of course.  A RINA user can enroll in as many 
DIFs as it needs to.  A DIF is a collection of applications working together.  Relaying packets 
(what a router does) is simply one application, albeit one that provides service to DIFs which 
operate at higher layers.  If a computer needs to reach an application that is not on a DIF that it 
belongs to, it can query a database on a DIF that it does belong to; that database may know what 
DIF to join to reach that application, and may give routing information about how to get there. 

So the connection-oriented vs. connectionless wars turn out to have been much ado about 
nothing.  What RINA provides is a set of connection options that are fundamentally lightweight.  
The DIF is in some ways connection-oriented:  Before a connection is established across a DIF, 
at any layer, the peer entities authenticate the application.  (All connections, at all layers, are 
applications of a DIF.)  Requiring authentication provides security:  If the recipient of a 
connection request does not approve, then the connection is rejected.  (Take that, spammers. 
Sayonara, denial-of-service attackers.)   

But unlike TCP, the delta-T-based DTCP doesn’t require explicit connection establishment or 
tear-down messages.  So it has less connection overhead than TCP/IP.  Since the same DIF 
protocols are used recursively, and end-to-end error control usually only has to happen once, 
many of the functions of EFCP simply aren’t requested except at the ends of a connection. The 
DIFs that provide intermediate relaying might only need to provide best-efforts QoS.  But if the 
application is a stream, end-to-end retransmission is not possible, so in that case all of the DIFs 
in the stack are likely to be asked to support a streaming QoS.  

Names are global, addresses local 
IP, as noted before, actually uses IP addresses as part of an application-entity name.  The domain 
name system is merely a human-friendly index that returns, within the application layer, a 
numeric IP address.  One of the newest major protocols in the TCP/IP suite, HTTP (invented in 
1989), tries to improve upon this; the actual URL string, a name, is transmitted to the web server, 
even as the IP layer uses the numeric address returned by DNS.  This lets a single web server, 
with a single IP address, be shared by many different names. 

The 32-bit IP version 4 address was more than adequate for the ARPANET.  It would have been 
sufficient forever, had it not been used for the worldwide public Internet, with billions of 
personal computers as clients. The IETF’s approach, IP version 6, “fixes” the shortage of 
addresses by putting a 128-bit source and destination address in every packet.  This simply 
perpetuates IP’s architectural flaws. The correction question is why?  Why should there be a 
single worldwide numeric address space? 

The obvious precedent is the telephone network, which has a worldwide numbering plan.  But 
telephone numbers nowadays are really names, just names designed to be entered on a numeric 
keypad.  Most calls require a quick database lookup before they are completed.   The actual 
address (such as the LRN) is hidden within the network.  In RINA, connections are requested of 
a DIF by name, and only by name.  A name is a variable-length string, typically fetched by the 
application; it need not even be visible to the end user.  There is no equivalent of the IP address.  
Every service directly attached to a DIF is known to that DIF, by name.  Everything else is 
reached by relaying to another DIF.  Names are thus passed from DIF to DIF as part of the 
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connection establishment phase.  A DIF names its own services points; its points of attachment 
are the names of the underlying DIFs.  (Compare this to IP which names points of attachment in 
lieu of a proper internetwork address.) 

Addresses of other forms may exist within a DIF. The scope of an address, then, is the DIF itself, 
and the address is really only an alias for a name. Since it’s not visible to the end user, it is only 
useful if it serves some purpose inside the black box.  Hence the address is likely to be 
topological:  It conveys information about how to reach the destination.  Two adjacent addresses 
are likely to be very near each other.  An address itself could be computed based upon the graph 
of the network. This is most useful for large DIFs, of course, and it doesn’t take the place of a 
routing algorithm; it merely simplifies the task.   

The size of the address is a parameter of the DIF.  A small DIF (like a LAN) may just use very 
short addresses, with each node knowing how to reach every other one.  A point-to-point link is 
itself a DIF, one which doesn’t need an address at all.  At the other extreme, the entire World 
Wide Web, or all of the public servers on the Internet, could be cast as a DIF, and it might need 
relatively large addresses.  But they would still be invisible to the application.  An 
implementation of RINA would take care of addresses automatically; they would not be assigned 
via human intervention, or subject to an addressing authority. 

Search and you shall find 
TCP/IP’s Domain Name System was a rather rudimentary database application even when it was 
created in the mid-1980s.  By today’s standards it is hopelessly primitive.  In a global Internet, 
how would RINA handle the task of finding a destination name?  Unlike IP backbone routers, 
which all need to know the path to everyone else, RINA routers can query a database, which can 
return information about how reach the destination – for instance, what DIF it’s on, and what 
DIFs connect to it. The database is modeled on a search engine.  It need not return a single 
answer, since there may be more than one way to get to the destination.  But by separating this 
part of the routing function from the relaying function, the router (a relaying DIF) can be 
dramatically simplified.  

A RINA database need not contain the entire world’s Internet; it only needs to list the members 
of its own DIF, though it may choose to also list paths to others.  Since there are no global 
numeric addresses (like IP) to attack by brute force, the database can act as a first line of 
security:  It need not return any answer at all to an unauthorized user (think “intranet”), or could 
indicate that the user’s connection request is unlikely to pass authentication.  

Mobility is inherent 
A benefit of this database-and-name-driven system is that a given application could have a 
“home” database search engine, and its actual current location could be updated in real time.  
Routing instructions are provided by search engine.  This can be dynamic, more like cellular 
telephony’s home location register than like the static DNS.  If you are using a mobile computer, 
its application-names would be constant, and as the computer moved from network to network, it 
would re-enroll in the new networks (perhaps automatically), and continually update this 
information in its home search engine.  There is thus no need for the “triangle” routing used in 
mobile IP.  Even cellular telephony has a triangle of its own, as the call is routed through the 
dialed number’s home switch before the home location register is queried.  In RINA, routing is 
fully dynamic. 
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Figure 4.  As a mobile host moves, it joins new DIF and drops its participation in old ones. 

Unicast, multicast, and anycast 
IP addresses do not refer to applications or hosts; they refer to a point of attachment (actually, a 
data link address!) on a single host.  It was a perfectly reasonable way to do an experimental 
network in the 1970s, but today, a DNS entry often points to a system that quickly redirects users 
to a member of a group of hosts which can collectively handle the actual load.  

RINA names are more flexible.  The most obvious form of reference, of course, is unicast:  The 
name refers to an application resident in a single place.  RINA does not name even attempt to 
name hosts per se.  It names applications.  An application can live in one place, which is 
addressed via unicast. But often an application resides on more than one host.  For instance, 
“http://www.google.com/” does not actually live on a single host; it is redirected somewhere, 
invisible to the user.  In so doing, it is simulating a second type of address, anycast.  Any one of 
a set of destinations can serve the request.  (Once a dialog is established between two hosts this 
way, it is likely to be completed via unicast.)  The third case is multicast, in which the 
information is relayed to every member of a set of destinations.  While multicast nominally 
exists on the Internet, it is rarely implemented; it was an afterthought, not easily handled. 

Multicast and anycast turn out to be subsets of a single form, whatevercast.  Both deal with a set 
of addresses and a rule.  Anycast addresses one member while multicast returns all members that 
satisfy the rule.  Just how a DIF implements whatevercast is an internal matter, of course, since 
it’s a black box, but the general case is that a name refers to a set of destinations.  Hence unicast 
can be seen as the special case, one where the set has a single member; the application is in one 
place.  Thus applications need do nothing special to deal with multicast or anycast. 

The value of efficient multicast is obvious in the case of streaming video.  A video stream can be 
sent to a multicast set of destinations.  This set can be dynamic:  When a user wants to watch the 
stream, the set top box or computer is immediately enrolled in the multicast set.  Only one copy 
of the stream is relayed to any given DIF, though that DIF may use its multicast capability to 
relay the stream to as many other DIFs as necessary to reach the members of the set.  This is far 
more efficient than Internet TV using UDP over IP, in which every viewer is watching its own 
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stream from a server.  It could even provide a practical way for cable TV to evolve to a common 
structure with the Internet itself. 

Easier adoption than IPv6 
It’s one thing to describe a protocol in the abstract and quite another to put it to good use.  The 
TCP/IP stack has largely become a monoculture so RINA can only be of practical use if it can 
work with TCP/IP, at least initially.  There’s more than one way that RINA can coexist with 
TCP/IP.   

In fact, it should be even easier to adopt RINA than to follow the IETF’s recommendations and 
transition from IP version 4 to IP version 6.  That’s a difficult transition at best.  IPv6 was not 
designed for backward or forward compatibility with its predecessor.  But they occupy the same 
place in a fixed protocol stack.  So the usual strategy for coexistence is for systems to run dual 
stacks.  They try to connect using IPv6, and if that fails, they try v4. So every node needs to stay 
on IPv4 until v6 can reach everyone you need to reach.  That in turn forces the issue of 
preserving the availability of IPv4 address space, so there isn’t much incentive to migrate.  It is a 
strategy for atrophy. 

RINA provides more options for its phased adoption. It is not fixed to one place in the protocol 
stack, so implementations can be flexible.  It treats TCP/IP as a sort of limited DIF.  RINA thus 
can be applied below TCP/IP, to provide a backbone network that provides service to TCP/IP 
hosts, or to join IP networks together.  RINA can also be used above IP, using existing IP links 
as a transport medium.  And RINA networks can be gatewayed to TCP/IP networks, translating 
at least some applications between the two.  

Adoption of RINA, once it becomes available, could thus make use of all three of these, 
gradually supplanting TCP and especially IPv4.  A backbone network could be built using 
RINA, supporting both types of upper layers.  And RINA-native applications could be developed 
and rolled out.  Since RINA does not depend on globally-unique IP addresses, a single IP address 
could function as a gateway to a RINA network in which applications communicate using 
names. 

The first stage of adoption is to phase out the use of IP addresses within the application layer. 
RINA considers NAT to be a normal function – addresses are a local function within the black 
box – so anything that violates that principle is going to be harder to migrate.  So it’s possible to 
start learning the lessons that RINA did and applying them within TCP/IP. This will help 
existing networks while taking a step forward.  And, of course, stop wasting time and money on 
IPv6, which simply does not solve any of IP’s real problems. 

Summary of benefits 
It can be seen that RINA offers a number of benefits compared to TCP/IP.  These include 
improved scalability (the ability to efficiently support larger networks) and security (both privacy 
of communications and protection against attack).  It addresses the “3M” challenges of mobility, 
multicasting and multihoming.  It provides a standard mechanism for application development. It 
can moot the neutrality issue by providing QoS options without allowing deep packet inspection 
or even making the application visible to an underlying network.  It provides an easy adoption 
path for IPv4 users.  And it does all this with an elegant simplicity that will facilitate lower cost, 
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higher-efficiency implementations.  By returning to the fundamentals and recognizing the 
patterns in network architecture, RINA promises to move networking to the next level.  

[As of this writing, RINA prototypes are still in the design phase and not yet ready for 
deployment.] 


